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A Note on the Stable Decomposition of 
Skew-Symmetric Matrices* 

By James R. Bunch 

Abstract. Computationally stable decompositions for skew-symmetric matrices, which take 
advantage of the skew-symmetry in order to halve the work and storage, are presented for 
solving linear systems of equations. 

1. Introduction. We shall consider here the problem of solving Ax = b on the 
computer, where A is either skew-symmetric (AT - -A) or skew-Hermitian 
(AT = -A). We seek a generalization of the LU decomposition in order to obtain a 
stable decomposition which takes advantage of AT = -A (or AT = -A) so that the 
work and storage are halved. Although skew matrices do not occur as frequently as 
symmetric matrices, they are occasionally of interest [7], [9], [10], [12]. 

If A is n X n (real or complex) skew-symmetric, then the diagonal of A is null. 
Since det A = det AT= det(-A) = (-l)y det A, we have det A 0 O if n is odd. If 
A- I exists, then A- I is also skew-symmetric. 

If A is n X n skew-Hermitian, then the diagonal of A is purely imaginary but need 
not be null, e.g., 

A - +- 

1 + i 2i]' 
where i - 1. Since det A det(AT) = det(-A) (-l) det A, we have 
Re(det A) = 0 if n is odd and Im(det A) = 0 if n is even. If A exists, then A- is 
skew-Hermitian. 

2. Decomposition of Skew-Symmetric Matrices. Let A be a real or complex 
skew-symmetric matrix. We may generalize the diagonal pivoting method for sym- 
metric matrices [2], [4], [5], [6], [8] as follows. First, partition A as 

[S _CT 

where S is k X k, C is (n - k) X k, and B is (n - k) X (n - k); clearly, S and B 
are skew-symmetric. If S and C are null, then we go on to B. If S is nonsingular, 
then 

s _cT 0ols 0 1[ _S sICT1 
[ c TB ] CS- I. [O B + CS- ICT [ 0 I ] 
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But B + CS- iCT is once again skew-symmetric. Hence, we need store only the 
strictly lower (or upper) triangular part of A and can overwrite those elements with 
the multipliers in CS-' (or -S- ICT) and the strictly lower (or upper) triangular part 
of B + CS ICT. Note that (CS I)T -S CT since ST = - 

Since diag(A) = 0, we cannot take k = 1 unless the first column of A (and hence 
the first row) is null. Otherwise, we have k = 2 and 

-a211 

if a21 # 0, then S is nonsingular. If a21 - 0 but all # 0 for some i, 2 < i < n, then 
we can interchange the i th and second row and column of A, so that 

and S is nonsingular; P = pT is obtained by interchanging the ith and first column 
of the identity matrix. 

Thus, if the first column of A is null, take PI = I, S = 0 is 1 X 1, C = 0 is an 
(n - 1)-vector, and we go directly to B. If the first column of A is not null, then A is 
2 X 2 and nonsingular, C is (n - 2) X 2, and the reduced matrix is B + CS- ICT. 

Then we repeat this procedure for B = -BT of order n - 1 in the former case and 
for B + CS- ICT -(B + CS- lCT)T of order n - 2 in the latter case. 

In conclusion, we have 

A - PIM1P2M2 ... Pn- 1Mn- IDMn- I Pn - M2P2M1PI, 

where PJ is the identity matrix or a permutation matrix, MJ is the identity matrix or a 
block unit lower triangular matrix containing two columns of multipliers in its jth 
and (j + I)st columns and (j + 2)nd through nth rows, M= MJ, and D is 
skew-symmetric block diagonal with 1 X 1 and 2 X 2 diagonal blocks-all 1 X 1 
blocks are zero and all 2 X 2 blocks are nonsingular. (If n is odd, then there is at 
least one 1 X 1 block.) Thus, we have reduced the skew matrix A to a block diagonal 
skew matrix D by a sequence of permutations and congruence transformations. Of 
course, all relevant elements of the Mj (or M1j) and D could be stored in the 
corresponding strictly lower (or upper) triangular part of A. One n-vector could store 
the relevant information in the permutations Pj. 

Counting divisions as multiplications, the decomposition requires I n - - n 
multiplications and 6n 3 - 43n2 n -+ 6n additions if n is even, and 

3- jn2 + 5n - 2 multiplications and 'n3 - n2 + 1 n -1 if n is odd. The 
number of comparisons is at most n2 -2 n. Given the decomposition of A, we can 
now solve Ax = b with n2 + --(n) multiplications and additions. 

3. Stability of the Decomposition. In order to have a stable decomposition, we 
need to ensure that catastrophic element growth in the reduced matrices does not 
occur from one step to the next [2], [13], [14]. No element growth occurred whenever 
S was 1 X 1. Let us now consider the case when S is 2 X 2. 

Let 

S=t 021] and A _CT] 
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Then a row of CS` is 

a 21 
[ai1, a,2] - a21 = [-ai2/a21, a/lla2l], 

a 21 

and an element of A(3) _ B + CS- ICT is of the form 

a)= -(a2 )a + (d )a, 2 

Thus, if I a2l 1= max2?1i?{j ail l, a2 }, then I a (y) I< 3 max, I ars I and 

max,, I1 (B + CS- ICT) iv I < 3 max, I ars . We can ensure this by interchanging the 
kth and second row and column if a akl = max2I, -1{1 a, I1 ,1 a,2 l} or by 
interchanging the second and first row and column and then the k th and second row 
and column if I ak2 |= maX2<1?n{j ail , I ai2 P} 

If we do this at each step, then the element growth factor, the largest element (in 
modulus) in all the reduced matrices divided by maxrs ars , is bounded by 

3n/2-1 if n is even| (3 )n-2 (7 )n-2 

{3(n-l1)/2-1 ifn is odd J 
This requires I2 - In comparisons, and is a partial pivoting strategy; cf. [4], [5], 

[13], [14]. The partial pivoting strategy for the diagonal pivoting method in the 
symmetric case gives a bound of (2.57)n- 1 [4], [5]. 

We can obtain a smaller bound on the element growth factor by employing a 
complete pivoting strategy. If I apq l= maxr>s{I ars 1}, then we can move the (p, q) 
element to the (2, 1) position symmetrically by interchanging the qth and first row 
and column and then the pth and second row and column. This requires at most 
Iln3 '+ n2 - I?n comparisons. By an analysis identical to Wilkinson's for Gaussian 

elimination with complete pivoting [13], we obtain the same bound as his on the 
element growth factor: < Fnf(n), where 

n 1/2 
f(n) = j kl/(k-1) < 1.8n (In n)14 

k=2 

f(100) 330. This compares with the bound of 3nf(n) for the complete pivoting 
strategy for the diagonal pivoting method in the symmetric case [2], [6]. 

4. Another Stable Decomposition for Skew-Symmetric Matrices. The other well- 
known stable decomposition for symmetric matrices is the tridiagonal decomposition 
developed by Aasen [ 1] and Parlett and Reid [ 11]. It decomposes A = AT as 

A = P2L2 ..Pn LnTLn n L2P2, 

where the P1 are permutation matrices, the L are unit lower triangular, and T is 
symmetric tridiagonal. It requires I n3 + 0(n2) multiplications and additions, and 
1n2 + C(n) comparisons; the bound on element growth is 4n-2 [3, p. 525]. 

If A is skew-symmetric, then, by modifying Aasen's algorithm in a manner similar 
to Section 2, we obtain 

A = P2L2 .Pn Ln TLn Pn .L2 P2 
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where the Pi and L. are as above, Lj = LfT, but T is now skew-symmetric tridiagonal 
(with a null diagonal). It requires In3 + 0(n2) multiplications and additions, and 

?n2+ C(n) comparisons; but now the bound on element growth is 3n-2 (this follows 
from [3, p. 525], since the diagonal of A is null). 

5. Stable Decomposition of Skew-Hermitian Matrices. If A is skew-Hermitian 
(AT = -A), Aasen's algorithm gives 

A = P2L2 ... Pn Ln TLn Pn ... L2 P2 L 

where the P1 and Lj are as above, L = LJT but T is now skew-Hermitian. Since the 
diagonal of A is not necessarily null, element growth is bounded by 4n-2 

However, when A is skew-Hermitian, we cannot use the techniques of Sections 2 
and 3 since the diagonal of A is now not necessarily null. But, if A is skew-Hermitian, 
then B = iA is Hermitian since BT = -bjT = -i(-A) = iA = B. Since B = iA is 
Hermitian, we can use the stable decomposition for Hermitian matrices [4], [5], [6] 
and the subroutines in LINPACK [8], obtaining a stable decomposition with 
6n3 + 0(n2) multiplications and additions, and -ln2 but < n2 comparisons with a 
partial pivoting strategy as implemented in LINPACK [8], or ?> 1 n3 but ? n3 

comparisons with a complete pivoting strategy [2], [6]. The element growth factor is 
bounded by (2.57)n-1 for the partial pivoting strategy and 3nf(n) for the complete 
pivoting strategy. The decomposition can now be used to solve Ax = b with 
n2 = C(n) multiplications and additions (by solving Bx = ib). 

6. Remarks. We could do the same thing when A is real skew-symmetric, but 
B = iA is then complex (Hermitian). The algorithms in Sections 2-4 show how we 
may stay in real arithmetic with stable decompositions based on congruence trans- 
formations. Since the nonzero eigenvalues of a real skew-symmetric matrix occur in 
purely imaginary complex conjugate pairs (?4i,ij where the yJ are positive), the 
"inertia" (OT, v, ?) of A (defined to be the number of positive, negative, and zero 
imaginary parts of the eigenvalues of A) is ((n - t)/2, (n - ;)/2, i). If A is also 
nonsingular then its "inertia" is (n/2, n/2, 0). This fixed inertia property is why 
skew-symmetric matrices are easier to decompose than symmetric indefinite matrices. 
We have an immediate modification of Sylvester's Inertia Theorem to skew-symmetric 
matrices: if A is skew-symmetric, then B = MAMT is skew-symmetric and B has the 
same "inertia" as A, where M is nonsingular. 

Department of Mathematics 
University of California, San Diego 
La Jolla, California 92093 

1. J. 0. AASEN, "On the reduction of a symmetric matrix to tridiagonal form," BIT, v. 11, 1971, pp. 
233-242. 

2. J. R. BUNCH, "Analysis of the diagonal pivoting method," SIAM J. Numer. Anal., v. 8, 1971, pp. 
656-680. 

3. J. R. BUNCH, "Partial pivoting strategies for symmetric matrices," SIAM J. Numer. Anal., v. 11, 
1974, pp. 521-528. 

4. J. R. BUNCH & L. KAUFMAN, "Some stable methods for calculating inertia and solving symmetric 
linear systems," Math. Comp., v. 31, 1977, pp. 163-179. 

5. J. R. BUNCH, L. KAUFMAN & B. N. PARLETT, "Decomposition of a symmetric matrix," Numer. 
Math., v. 27, 1976, pp. 95-109. 



STABLE DECOMPOSITION OF SKEW-SYMMETRIC MATRICES 479 

6. J. R. BUNCH & B. N. PARLETr, "Direct methods for solving symmetric indefinite systems of linear 
equations," SIA M J. Numer. A nal., v. 8, 1971, pp. 639-655. 

7. F. DELALE & F. ERDOGAN, "The effect of transverse shear in a cracked plate under skew-symmetric 
loading," Trans. A SME, v. 46, 1979, pp. 618-624. 

8. J. J. DONGARRA, J. R. BUNCH, C. B. MOLER & G. W. STEWART, LINPA CK User's Guide, SIAM, 
Philadelphia, Pa., 1979. 

9. W. GRAEFF, W. BAUSPIESS, U. BONSE, M. SCHLENKER & H. RAUCH, "Phase imaging with a skew 
symmetric LLL neutron interferometer," Acta Cryst. Sect. A, v. 34, 1978, p. 239. 

10. L. MIRSKY, An Introduction to Linear Algebra, Clarendon Press, Oxford, 1955. 
11. B. N. PARLETT & J. K. REID, "On the solution of a system of linear equations whose matrix is 

symmetric but not definite," BIT, v. 10, 1970, pp. 386-397. 
12. R. C. THOMPSON, "Principal minors of complex symmetric and skew-matrices," Linear Algebra 

Appl., v. 28, 1979, pp. 249-255. 
13. J. H. WILKINSON, "Error analysis of direct methods of matrix inversion," J. A CM, v. 8, 1961, pp. 

281-330. 
14. J. H. WILKINSON, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965. 


	Cit r114_c116: 


