A Note on the Stable Decomposition of Skew-Symmetric Matrices*

By James R. Bunch

Abstract

Computationally stable decompositions for skew-symmetric matrices, which take advantage of the skew-symmetry in order to halve the work and storage, are presented for solving linear systems of equations.

1. Introduction. We shall consider here the problem of solving $A x=b$ on the computer, where A is either skew-symmetric $\left(A^{T}=-A\right)$ or skew-Hermitian ($\bar{A}^{T}=-A$). We seek a generalization of the $L U$ decomposition in order to obtain a stable decomposition which takes advantage of $A^{T}=-A$ (or $\bar{A}^{T}=-A$) so that the work and storage are halved. Although skew matrices do not occur as frequently as symmetric matrices, they are occasionally of interest [7], [9], [10], [12].

If A is $n \times n$ (real or complex) skew-symmetric, then the diagonal of A is null. Since $\operatorname{det} A=\operatorname{det} A^{T}=\operatorname{det}(-A)=(-1)^{n} \operatorname{det} A$, we have $\operatorname{det} A=0$ if n is odd. If A^{-1} exists, then A^{-1} is also skew-symmetric.

If A is $n \times n$ skew-Hermitian, then the diagonal of A is purely imaginary but need not be null, e.g.,

$$
A=\left[\begin{array}{cc}
i & -1+i \\
1+i & 2 i
\end{array}\right],
$$

where $i=\sqrt{-1}$. Since $\overline{\operatorname{det} A}=\operatorname{det}\left(\bar{A}^{T}\right)=\operatorname{det}(-A)=(-1)^{n} \operatorname{det} A$, we have $\operatorname{Re}(\operatorname{det} A)=0$ if n is odd and $\operatorname{Im}(\operatorname{det} A)=0$ if n is even. If A^{-1} exists, then A^{-1} is skew-Hermitian.
2. Decomposition of Skew-Symmetric Matrices. Let A be a real or complex skew-symmetric matrix. We may generalize the diagonal pivoting method for symmetric matrices [2], [4], [5], [6], [8] as follows. First, partition A as

$$
\left[\begin{array}{c|c}
S & -C^{T} \\
\hline C & B
\end{array}\right],
$$

where S is $k \times k, C$ is $(n-k) \times k$, and B is $(n-k) \times(n-k)$; clearly, S and B are skew-symmetric. If S and C are null, then we go on to B. If S is nonsingular, then

$$
A=\left[\begin{array}{c|c}
S & -C^{T} \\
\hline C & B
\end{array}\right]=\left[\begin{array}{c|c}
I & 0 \\
\hline C S^{-1} & I
\end{array}\right]\left[\begin{array}{c|c}
S & 0 \\
\hline 0 & B+C S^{-1} C^{T}
\end{array}\right]\left[\begin{array}{c|c}
I & -S^{-1} C^{T} \\
\hline 0 & I
\end{array}\right] .
$$

[^0]But $B+C S^{-1} C^{T}$ is once again skew-symmetric. Hence, we need store only the strictly lower (or upper) triangular part of A and can overwrite those elements with the multipliers in $C S^{-1}$ (or $-S^{-1} C^{T}$) and the strictly lower (or upper) triangular part of $B+C S^{-1} C^{T}$. Note that $\left(C S^{-1}\right)^{T}=-S^{-1} C^{T}$ since $S^{-T}=-S^{-1}$.

Since $\operatorname{diag}(A)=0$, we cannot take $k=1$ unless the first column of A (and hence the first row) is null. Otherwise, we have $k=2$ and

$$
S=\left[\begin{array}{cc}
0 & -a_{21} \\
a_{21} & 0
\end{array}\right]
$$

if $a_{21} \neq 0$, then S is nonsingular. If $a_{21}=0$ but $a_{11} \neq 0$ for some $i, 2 \leqslant i \leqslant n$, then we can interchange the i th and second row and column of A, so that

$$
A=P_{1}\left[\begin{array}{c|c}
S & -C^{T} \\
\hline C & B
\end{array}\right] P_{1}
$$

and S is nonsingular; $P_{1}=P_{1}^{T}$ is obtained by interchanging the i th and first column of the identity matrix.

Thus, if the first column of A is null, take $P_{1}=I, S=0$ is $1 \times 1, C=0$ is an ($n-1$)-vector, and we go directly to B. If the first column of A is not null, then A is 2×2 and nonsingular, C is $(n-2) \times 2$, and the reduced matrix is $B+C S^{-1} C^{T}$. Then we repeat this procedure for $B=-B^{T}$ of order $n-1$ in the former case and for $B+C S^{-1} C^{T}=-\left(B+C S^{-1} C^{T}\right)^{T}$ of order $n-2$ in the latter case.

In conclusion, we have

$$
A=P_{1} M_{1} P_{2} M_{2} \cdots P_{n-1} M_{n-1} D \tilde{M}_{n-1} P_{n-1} \cdots \tilde{M}_{2} P_{2} \tilde{M}_{1} P_{1}
$$

where P_{J} is the identity matrix or a permutation matrix, M_{j} is the identity matrix or a block unit lower triangular matrix containing two columns of multipliers in its j th and $(j+1)$ st columns and $(j+2)$ nd through nth rows, $\tilde{M}_{j}=M_{j}^{T}$, and D is skew-symmetric block diagonal with 1×1 and 2×2 diagonal blocks-all 1×1 blocks are zero and all 2×2 blocks are nonsingular. (If n is odd, then there is at least one 1×1 block.) Thus, we have reduced the skew matrix A to a block diagonal skew matrix D by a sequence of permutations and congruence transformations. Of course, all relevant elements of the M_{j} (or \tilde{M}_{j}) and D could be stored in the corresponding strictly lower (or upper) triangular part of A. One n-vector could store the relevant information in the permutations P_{j}.

Counting divisions as multiplications, the decomposition requires $\frac{1}{6} n^{3}-\frac{1}{4} n^{2}-\frac{1}{6} n$ multiplications and $\frac{1}{6} n^{3}-\frac{3}{4} n^{2}+\frac{5}{6} n$ additions if n is even, and $\frac{1}{6} n^{3}-\frac{1}{2} n^{2}+\frac{5}{6} n-\frac{1}{2}$ multiplications and $\frac{1}{6} n^{3}-n^{2}+\frac{11}{6} n-1$ if n is odd. The number of comparisons is at most $\frac{1}{2} n^{2}-\frac{1}{2} n$. Given the decomposition of A, we can now solve $A x=b$ with $n^{2}+\theta(n)$ multiplications and additions.
3. Stability of the Decomposition. In order to have a stable decomposition, we need to ensure that catastrophic element growth in the reduced matrices does not occur from one step to the next [2], [13], [14]. No element growth occurred whenever S was 1×1. Let us now consider the case when S is 2×2.

Let

$$
S=\left[\begin{array}{cc}
0 & -a_{21} \\
a_{21} & 0
\end{array}\right] \quad \text { and } \quad A=\left[\begin{array}{cc}
S & -C^{T} \\
C & B
\end{array}\right]
$$

Then a row of $C S^{-1}$ is

$$
\left[a_{i 1}, a_{t 2}\right]\left[\begin{array}{cc}
0 & \frac{1}{a_{21}} \\
-\frac{1}{a_{21}} & 0
\end{array}\right]=\left[-a_{i 2} / a_{21}, a_{t 1} / a_{21}\right]
$$

and an element of $A^{(3)} \equiv B+C S^{-1} C^{T}$ is of the form

$$
a_{i j}^{(3)}=a_{t j}-\left(\frac{a_{i 2}}{a_{21}}\right) a_{j 1}+\left(\frac{a_{i 1}}{a_{21}}\right) a_{\jmath 2} .
$$

Thus, if $\left|a_{21}\right|=\max _{2 \leqslant i \leqslant n}\left\{\left|a_{i 1}\right|,\left|a_{i 2}\right|\right\}$, then $\left|a_{i j}^{(3)}\right| \leqslant 3 \max _{r, s}\left|a_{r s}\right|$ and $\max _{i, j}\left|\left(B+C S^{-1} C^{T}\right)_{i j}\right| \leqslant 3 \max _{r, s}\left|a_{r s}\right|$. We can ensure this by interchanging the k th and second row and column if $\left|a_{k 1}\right|=\max _{2 \leqslant l \leqslant n}\left\{\left|a_{t 1}\right|,\left|a_{t 2}\right|\right\}$ or by interchanging the second and first row and column and then the k th and second row and column if $\left|a_{k 2}\right|=\max _{2 \leqslant 1 \leqslant n}\left\{\left|a_{i 1}\right|,\left|a_{i 2}\right|\right\}$.

If we do this at each step, then the element growth factor, the largest element (in modulus) in all the reduced matrices divided by $\max _{r, s}\left|a_{r s}\right|$, is bounded by

$$
\left\{\begin{array}{ll}
3^{n / 2-1} & \text { if } n \text { is even } \\
3^{(n-1) / 2-1} & \text { if } n \text { is odd }
\end{array}\right\} \leqslant(\sqrt{3})^{n-2}<(1.7321)^{n-2}
$$

This requires $\frac{1}{2} n^{2}-\frac{1}{2} n$ comparisons, and is a partial pivoting strategy; cf. [4], [5], [13], [14]. The partial pivoting strategy for the diagonal pivoting method in the symmetric case gives a bound of $(2.57)^{n-1}$ [4], [5].

We can obtain a smaller bound on the element growth factor by employing a complete pivoting strategy. If $\left|a_{p q}\right|=\max _{r>s}\left\{\left|a_{r s}\right|\right\}$, then we can move the (p, q) element to the $(2,1)$ position symmetrically by interchanging the q th and first row and column and then the p th and second row and column. This requires at most $\frac{1}{12} n^{3}+\frac{1}{8} n^{2}-\frac{1}{12} n$ comparisons. By an analysis identical to Wilkinson's for Gaussian elimination with complete pivoting [13], we obtain the same bound as his on the element growth factor: $<\sqrt{n} f(n)$, where

$$
f(n)=\left(\prod_{k=2}^{n} k^{1 /(k-1)}\right)^{1 / 2}<1.8 n^{(\ln n) / 4}
$$

$f(100) \approx 330$. This compares with the bound of $3 n f(n)$ for the complete pivoting strategy for the diagonal pivoting method in the symmetric case [2], [6].
4. Another Stable Decomposition for Skew-Symmetric Matrices. The other wellknown stable decomposition for symmetric matrices is the tridiagonal decomposition developed by Aasen [1] and Parlett and Reid [11]. It decomposes $A=A^{T}$ as

$$
A=P_{2} L_{2} \cdots P_{n} L_{n} T L_{n}^{T} P_{n} \cdots L_{2}^{T} P_{2}
$$

where the P_{J} are permutation matrices, the L_{j} are unit lower triangular, and T is symmetric tridiagonal. It requires $\frac{1}{6} n^{3}+\theta\left(n^{2}\right)$ multiplications and additions, and $\frac{1}{2} n^{2}+\theta(n)$ comparisons; the bound on element growth is 4^{n-2} [3, p. 525].

If A is skew-symmetric, then, by modifying Aasen's algorithm in a manner similar to Section 2, we obtain

$$
A=P_{2} L_{2} \cdots P_{n} L_{n} T \tilde{L}_{n} P_{n} \cdots \tilde{L}_{2} P_{2}
$$

where the P_{j} and L_{j} are as above, $\tilde{L}_{j}=L_{j}^{T}$, but T is now skew-symmetric tridiagonal (with a null diagonal). It requires $\frac{1}{6} n^{3}+\theta\left(n^{2}\right)$ multiplications and additions, and $\frac{1}{2} n^{2}+\theta(n)$ comparisons; but now the bound on element growth is 3^{n-2} (this follows from [3, p. 525], since the diagonal of A is null).
5. Stable Decomposition of Skew-Hermitian Matrices. If A is skew-Hermitian $\left(\bar{A}^{T}=-A\right)$, Aasen's algorithm gives

$$
A=P_{2} L_{2} \cdots P_{n} L_{n} T \tilde{L}_{n} P_{n} \cdots \tilde{L}_{2} P_{2}
$$

where the P_{j} and L_{j} are as above, $\tilde{L}_{j}=\bar{L}_{j}^{T}$, but T is now skew-Hermitian. Since the diagonal of A is not necessarily null, element growth is bounded by 4^{n-2}.

However, when A is skew-Hermitian, we cannot use the techniques of Sections 2 and 3 since the diagonal of A is now not necessarily null. But, if A is skew-Hermitian, then $B=i A$ is Hermitian since $\bar{B}^{T}=-i \bar{A}^{T}=-i(-A)=i A=B$. Since $B=i A$ is Hermitian, we can use the stable decomposition for Hermitian matrices [4], [5], [6] and the subroutines in LINPACK [8], obtaining a stable decomposition with $\frac{1}{6} n^{3}+\theta\left(n^{2}\right)$ multiplications and additions, and $\geqslant \frac{1}{2} n^{2}$ but $\leqslant n^{2}$ comparisons with a partial pivoting strategy as implemented in LINPACK [8], or $\geqslant \frac{1}{12} n^{3}$ but $\leqslant \frac{1}{6} n^{3}$ comparisons with a complete pivoting strategy [2], [6]. The element growth factor is bounded by $(2.57)^{n-1}$ for the partial pivoting strategy and $3 n f(n)$ for the complete pivoting strategy. The decomposition can now be used to solve $A x=b$ with $n^{2}=\theta(n)$ multiplications and additions (by solving $B x=i b$).
6. Remarks. We could do the same thing when A is real skew-symmetric, but $B=i A$ is then complex (Hermitian). The algorithms in Sections $2-4$ show how we may stay in real arithmetic with stable decompositions based on congruence transformations. Since the nonzero eigenvalues of a real skew-symmetric matrix occur in purely imaginary complex conjugate pairs ($\pm i \mu_{j}$ where the μ_{J} are positive), the "inertia" (π, ν, ζ) of A (defined to be the number of positive, negative, and zero imaginary parts of the eigenvalues of A) is $((n-\zeta) / 2,(n-\zeta) / 2, \zeta)$. If A is also nonsingular then its "inertia" is ($n / 2, n / 2,0$). This fixed inertia property is why skew-symmetric matrices are easier to decompose than symmetric indefinite matrices. We have an immediate modification of Sylvester's Inertia Theorem to skew-symmetric matrices: if A is skew-symmetric, then $B=M A M^{T}$ is skew-symmetric and B has the same "inertia" as A, where M is nonsingular.

Department of Mathematics
University of California, San Diego
La Jolla, California 92093

[^1]6. J. R. Bunch \& B. N. Parlett, "Direct methods for solving symmetric indefinite systems of linear equations," SIA M J. Numer. Anal., v. 8, 1971, pp. 639-655.
7. F. Delale \& F. Erdogan, "The effect of transverse shear in a cracked plate under skew-symmetric loading," Trans. ASME, v. 46, 1979, pp. 618-624.
8. J. J. Dongarra, J. R. Bunch, C. B. Moler \& G. W. Stewart, LINPACK User's Guide, SIAM, Philadelphia, Pa., 1979.
9. W. Graeff, W. Bauspiess, U. Bonse, M. Schlenker \& H. Rauch, "Phase imaging with a skew symmetric LLL neutron interferometer," Acta Cryst. Sect. A, v. 34, 1978, p. 239.
10. L. Mirsky, An Introduction to Linear Algebra, Clarendon Press, Oxford, 1955.
11. B. N. Parlett \& J. K. Reid, "On the solution of a system of linear equations whose matrix is symmetric but not definite," $B I T$, v. 10, 1970, pp. 386-397.
12. R. C. Thompson, "Principal minors of complex symmetric and skew-matrices," Linear Algebra Appl., v. 28, 1979, pp. 249-255.
13. J. H. Wilkinson, "Error analysis of direct methods of matrix inversion," J. ACM, v. 8, 1961, pp. 281-330.
14. J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.

[^0]: Received November 19, 1980; revised May 15, 1981.
 1980 Mathematics Subject Classification. Primary 65F15.

 * Support provided by NSF grant MCS 79-20491.

[^1]: \rightarrow J. O. AASEN, "On the reduction of a symmetric matrix to tridiagonal form," BIT, v. 11, 1971, pp. 233-242.
 2. J. R. Bunch, "Analysis of the diagonal pivoting method," SIAM J. Numer. Anal., v. 8, 1971, pp. 656-680.
 3. J. R. Bunch, "Partial pivoting strategies for symmetric matrices," SIAM J. Numer. Anal., v. 11, 1974, pp. 521-528.
 4. J. R. Bunch \& L. Kaufman, "Some stable methods for calculating inertia and solving symmetric linear systems," Math. Comp., v. 31, 1977, pp. 163-179.
 5. J. R. Bunch, L. Kaufman \& B. N. Parlett, "Decomposition of a symmetric matrix," Numer. Math., v. 27, 1976, pp. 95-109.

